Local Reconstruction Error Alignment: A Fast Unsupervised Feature Selection Algorithm for Radar Target Clustering
نویسندگان
چکیده
منابع مشابه
Fast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کاملA Fast Clustering-based Feature Subset Selection Algorithm
The paper aims at proposing the fast clustering algorithm for eliminating irrelevant and redundant data. Feature selection is applied to reduce the number of features in many applications where data has hundreds or thousands of features. Existing feature selection methods mainly focus on finding relevant features. In this paper, we show that feature relevance alone is insufficient for efficient...
متن کاملfast sffs-based algorithm for feature selection in biomedical datasets
biomedical datasets usually include a large number of features relative to the number of samples. however, some data dimensions may be less relevant or even irrelevant to the output class. selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. to this end, this paper presents a hybrid method of filter and wr...
متن کاملA Review Of Fast Clustering-Based Feature Subset Selection Algorithm
In this paper we cover some reference paper and compared different algorithm on the basis of their performance and selection of data set. Where the efficiency concerns on the time evaluation of features selection, and the effectiveness is related to the quality of the subset of features selection. We analysis this report based on feature subset selection algorithm from the years of 1997 to 2013...
متن کاملSpectral clustering and discriminant analysis for unsupervised feature selection
In this paper, we propose a novel method for unsupervised feature selection, which utilizes spectral clustering and discriminant analysis to learn the cluster labels of data. During the learning of cluster labels, feature selection is performed simultaneously. By imposing row sparsity on the transformation matrix, the proposed method optimizes for selecting the most discriminative features whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2014
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.e97.d.357