Local Reconstruction Error Alignment: A Fast Unsupervised Feature Selection Algorithm for Radar Target Clustering

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets

Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...

متن کامل

A Fast Clustering-based Feature Subset Selection Algorithm

The paper aims at proposing the fast clustering algorithm for eliminating irrelevant and redundant data. Feature selection is applied to reduce the number of features in many applications where data has hundreds or thousands of features. Existing feature selection methods mainly focus on finding relevant features. In this paper, we show that feature relevance alone is insufficient for efficient...

متن کامل

fast sffs-based algorithm for feature selection in biomedical datasets

biomedical datasets usually include a large number of features relative to the number of samples. however, some data dimensions may be less relevant or even irrelevant to the output class. selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. to this end, this paper presents a hybrid method of filter and wr...

متن کامل

A Review Of Fast Clustering-Based Feature Subset Selection Algorithm

In this paper we cover some reference paper and compared different algorithm on the basis of their performance and selection of data set. Where the efficiency concerns on the time evaluation of features selection, and the effectiveness is related to the quality of the subset of features selection. We analysis this report based on feature subset selection algorithm from the years of 1997 to 2013...

متن کامل

Spectral clustering and discriminant analysis for unsupervised feature selection

In this paper, we propose a novel method for unsupervised feature selection, which utilizes spectral clustering and discriminant analysis to learn the cluster labels of data. During the learning of cluster labels, feature selection is performed simultaneously. By imposing row sparsity on the transformation matrix, the proposed method optimizes for selecting the most discriminative features whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEICE Transactions on Information and Systems

سال: 2014

ISSN: 0916-8532,1745-1361

DOI: 10.1587/transinf.e97.d.357